分布式光纤传感技术利用光纤本身作为信号感应介质和传输介质,可同时测量光纤路径上时间和空间连续分布的信息。通过测量光纤中光波的强度、频率、相位等物理参量,分布式光纤传感技术可以对温度、振动、应变等多种状态变化进行感知。该技术具有传感距离长、抗电磁干扰、无需远程供电、体小质轻、可实现连续分布式测量等诸多优点,已成为油气管道、高速轨道交通、超/特高压输电线路、桥梁隧道等多种领域中健康监测和诊断的有效技术手段,受到了国内外广泛的关注,极具发展前景和应用价值。我国在“十三五”、“十四五”的“智能传感器”、“重大基础设施安全”、“智慧城市”、“重大科学仪器设备开发”、“地震成像”等多个重大方向均体现出对分布式光纤传感技术的高度关注。
分布式光纤传感技术主要归属于光电信息工程、电子信息等专业,同时具有明显的跨专业、跨学科特征。培养扎实掌握该技术基础知识的专业人才,符合新工科专业建设的发展方向,对于推动相关学科发展、服务国家经济建设具有重要的意义。
分布式光纤传感技术的服务应用对象体量巨大、作用关键,实际中难以直接在课堂及实验室对其进行直观有效的实验展示和讲解。因此,利用虚拟仿真实验的技术手段,通过情景体验式的教学方法,将分布式光纤传感技术的原理进行细致的讲解和对真实现场应用的高还原度演示,不仅可使学生能够深入学习和掌握分布式光纤传感技术的原理、应用技术,同时能够将立德树人、课程思政融入教学过程,使学生了解我国经济发展的伟大成效,激发学生的自豪感、使命感和爱国热情。
本课程以输油管道为监测对象进行分布式光纤传感技术的现场仿真实验。油气能源为国家的发展和建设提供了必不可少的动力和原料,是国家飞速发展的重要支撑。管道输送在油气能源的供给中居于绝对主要的地位。到2020年,我国累计建成油气管道14.4万公里。然而我国现有的油气管道距离长,铺设地点和环境十分复杂,管道会经过山川、河流、湖泊、草地、沙漠、荒野、乡村、城郊、城市等多种地形和区域。在这样复杂的环境中,油气管道经过长期运行,会受到多种多样的外界影响,如局部腐蚀、第三方施工破坏、打孔偷盗、自然灾害等,极有可能出现泄漏问题。因此对油气管道的安全状态进行监测十分重要。
管道泄漏检测方法主要分为四类:声学检漏法、软件检漏法、智能球法和光纤传感检漏法。目前,由于光纤传感技术具备抗干扰性好、耐久度高、后期维护成本低、可以实现高效灵敏的分布式传感等优点,光纤传感检漏法在管道泄漏检测以及安全监测方面的应用正逐渐扩大。现阶段应用在管道安全检测方面的光纤传感技术主要包括以下几种:光纤布拉格光栅技术(FBG)、基于布里渊散射的光纤传感技术(BOTDR,BOTDA)、基于拉曼散射的光时域反射技术(ROTDR)、光时域反射技术(OTDR)和基于相位敏感的光时域反射技术(F-OTDR)。在本实验教学项目中主要使用的技术是BOTDR和F-OTDR。BOTDR是根据光纤中的背向布里渊散射光的频移实现对管道运行时的温度的测量;F-OTDR是利用光相干效应提取高灵敏度的相位变化,从而可以探测到管道沿途的极微弱光纤振动,即本教学实验项目利用BOTDR和F-OTDRliang两种技术实现对管道运行时的温度和振动两种物理量的测量。
与此同时,随着机器学习技术的发展和成熟,越来越多的管道监测研究不仅仅拘泥于光纤传感技术,而是试图将其和机器学习技术结合在一起,期望光纤传感高灵敏度的特点和机器学习高准确度的特点可以相结合,从而实现更高质量的管道安全监测。根据现阶段的研究可以发现,光纤传感技术通常与支持向量机(SVM)、各类神经网络、随机森林(Random Forest)、各种时间序列处理方法等机器学习模型相结合,在管道监测方面已经取得了一定的进展。
综合上述的光纤传感技术在管道监测方面的研究进展状况,可以看出光纤传感技术应用在不断扩大和深入的同时,与相关技术的结合变得更加密切,这意味着管道安全监测技术正得到提高和完善,并逐步迈向高效化。